๋ค์ด๊ฐ๋ ๋ง
Transformer๋ (CNN๋ณด๋ค) Inductive Bias๊ฐ ์ฝํ ๋คํธ์ํฌ๋ก, general-purpose ๋คํธ์ํฌ์ ์๋ก์ด ์งํ์ ์ฐ ๊ตฌ์กฐ๋ก ํ๊ฐ๋ฐ์ต๋๋ค. Inductive Bias๊ฐ ์ ๋ค๋ ๊ฒ์ ์๋ ์ ๊ฒ์ธ๋ฐ, ์ด๋ฅผ ์ดํดํ๊ธฐ ์ํด์๋ Inductive Bias๊ฐ ๋ฌด์์ธ์ง ๊ทธ๋ฆฌ๊ณ Inductive Bias๊ฐ ํ์ต์ ๋ผ์น๋ ์ํฅ์ ์ดํดํ ํ์๊ฐ ์์ต๋๋ค. ๋ณธ ๊ธ์์๋ ์ถ์ํ๋ ํํ๋ก Inductive Bias๋ฅผ ์ค๋ช ํด๋ณด๋ ค ํฉ๋๋ค.
In computer vision, there has recently been a surge of interest in end-to-end Transformers, prompting efforts to replace hand-wired features or inductive biases with general-purpose neural architectures powered by data-driven training.
Chen et al. 2022 ICLR
_________________
๐ซฅ ์ผ๋จ ํ๋ง๋๋ก ์ค๋ช ํด ๋ณด์๋ฉด,
Inductive Bias๋, ‘๋ชจ๋ธ’์ด ์์ฒด์ ์ผ๋ก (๊ตฌ์กฐ์ ์ผ๋ก) ๊ฐ์ง๊ณ ์๋ ํธ๊ฒฌ์ด๋ค.
์ฐธ๊ณ ๋ก, ์ฌ๊ธฐ์ ๋งํ๋ “๋ชจ๋ธ์ด ์์ฒด์ ์ผ๋ก”๋ผ๋ ๋ง์ ๋ชจ๋ธ์ ํ๋ผ๋ฏธํฐ์ ๊ฐ์ ๋ํ ์ด์ผ๊ธฐ๋ผ๊ธฐ๋ณด๋ค๋ ๋ชจ๋ธ์ ๊ตฌ์กฐ๋ฅผ ๋งํ๋ค. ์๋ฅผ ๋ค๋ฉด RNN์ด๋ผ๊ณ ํ๋ค๋ฉด ‘์ ๋ ฅ์์ ์ถ๋ ฅ์ผ๋ก๊น์ง ๋์ค๊ธฐ๊น์ง ๋ชจ๋ธ์ด ์ ๋ ฅ ๋ฐ์ดํฐ์ ํน์ง๋ค์ ์ฌ๊ท์ ์ผ๋ก ์ฒ๋ฆฌํ๋ ๊ตฌ์กฐ’, CNN์ด๋ผ๊ณ ํ๋ค๋ฉด ‘์ ๋ ฅ ์ด๋ฏธ์ง์ ๋ํด์ ์ง์ญ์ (local)์ธ ํฝ์ ๊ฐ๋ค์ ๊ฐ์ง๊ณ ๊ทธ๋ค์ ์์ ์ ๋ณด๋ฅผ ์ฐ์ถํ๋ ๊ตฌ์กฐ’ ๋ง์ด๋ค.
๋ค๋ฅด๊ฒ ๋งํ๋ฉด,
๋ชจ๋ธ์ด ์ ๋ ฅ๋ฐ์ดํฐ์ ์ถ๋ ฅ ๋ฐ์ดํฐ์ ๊ด๊ณ์ ๋ํด
๋ด์ฌ์ ์ผ๋ก ๊ฐ์ง๊ณ ์๋ ์ผ์ข ์ ๊ด์ ์ด๋ผ๊ณ ๋งํ ์ ์๊ฒ ๋ค.
๐ค ์กฐ๊ธ ๋ ์์ธํ ์ค๋ช ํด ๋ณด์,
Inductive Bias์ ๋ํด์ ์กฐ๊ธ ๋ ์์ธํ ์ค๋ช ํ๋ ค๋ฉด, ๊ธฐ๊ณ ํ์ต์์ ๋งํ๋ ‘ํ์ต (learning)์ด๋ ๋ฌด์์ธ๊ฐ’๋ก ๊ฑฐ์ฌ๋ฌ ์ฌ๋ผ๊ฐ์ผ ํ๋ค.
๊ธฐ๊ณํ์ต์์ ํ์ต์ ๊ฒฐ๊ตญ ์ต์ ์ ํจ์๋ฅผ ์ฐพ๋ ๊ณผ์ ์ด๋ผ๊ณ ๋ณผ ์ ์๋ค. ๋ฌธ์ ๋ ์ธ์์ ๋ชจ๋ ํจ์ (hypothesis)๋ค ์ค์์ '์ต์ '์ ์ฐพ๋ ๊ฒ์ด ์ด๋ ต๊ธฐ ๋๋ฌธ์ ๊ฐ๋ฐ์๋ค์ '์ด ์ค์์ ์ฐพ์'๋ผ๊ณ ์ผ์ข ์ ํ์ ๋ ์ง๋จ์ ์ ํด์ค๋ค. ์ด๋ฅผ Hypothesis Set์ด๋ผ๊ณ ํ๋ค. ๊ทธ๋ฆฌ๊ณ ๊ธฐ๊ณ ํ์ต์์ Hypothesis Set์ ๋ชจ๋ธ์ ๊ตฌ์กฐ์ ์ํด์ ๊ฒฐ์ ๋๋ค.
์ฐธ๊ณ ๋ก, ์ต์ ์ hypothesis๋ฅผ ์ฐพ๋๋ค๋ ๊ฒ์ ํ์ต ๋ฐ์ดํฐ์ ๋ํด์๋ง ์ ๋ง์ ๋ฟ ์๋๋ผ ๋ณด์ง ๋ชปํ ๋ฐ์ดํฐ์ ๋ํด์๋ ์ ๋ง์ถ๋ค๋ ๊ฒ์ ์๋ฏธํ๋ค (์ฆ, ์ผ๋ฐํ(generalization)๊ฐ ์ ๋๋ ๊ฒ์ ์๋ฏธํ๋ค)
์๋ฅผ ๋ค์ด, ๋ฌธ์ ๊ฐ ์ฃผ์ด์ง๊ณ ์ด๋ฅผ Linear Regression ๋ชจ๋ธ์ ์ฌ์ฉํด์ ํ๊ณ ์ ํ๋ค๊ณ ์๊ฐํด ๋ณด์. ๊ทธ๋ฌ๋ฉด Hypothesis Set์ ์ ์ํ Linear Regression ๋ชจ๋ธ์ด ํํํ ์ ์๋ ์งํฉ์ผ๋ก ํ์ ๋ ๊ฒ์ด๊ณ , Linear Regression ๋ชจ๋ธ์ ์ผ๋ฐํ ์ ํ๋๋ฅผ ์ต๋๋ก ํ ์ ์๋ ์ต์ ์ ํ๋ผ๋ฏธํฐ๋ฅผ ์ฐพ๊ธฐ ์ํด ํ์ต์ ์ํํ ๊ฒ์ด๋ค.
์ด๋, Linear Reression ๋ชจ๋ธ์ ์ ํํ๋ค๋ ๊ฒ์ ์ข ์ ๋ณ์ y์ ํ ๊ฐ ์ด์์ ๋ ๋ฆฝ ๋ณ์ X ์ฌ์ด์ ์ ํ ๊ด๊ณ๊ฐ ์๋ค๋ ๊ฐ์ ์ด ๋ด์ฌ๋๋ ๊ฒ์ด๋ค. ๋ค์ ๋งํด์, Linear Regression ๋ชจ๋ธ์ ์ข ์ ๋ณ์์ ๋ ๋ฆฝ ๋ณ์ ์ฌ์ด์ ์ ํ ๊ด๊ณ๋ผ๋ ์ผ์ข ์ "๊ท๋ฉ์ ์ธ ํธํฅ"์ ๊ฐ๊ฒ ๋๋ ๊ฒ์ด๋ค.
๋ฅ๋ฌ๋ ๋ชจ๋ธ๋ค๊ณผ Inductive Bias
์ด์ ์ ํ์ ์ธ ๋ฅ๋ฌ๋ ๋ชจ๋ธ๋ค๋ก ๋์ด์์ ์กฐ๊ธ ๋ ์ด์ผ๊ธฐํด ๋ณด์. ๊ทธ๋ฌ๋ฉด Fully Connected ๋ชจ๋ธ์ด๋ CNN, RNN ๋ฑ์ด ๊ฐ๋ Inductive Bias๋ ๋ฌด์์ผ๊น? ์๋ Table 1๊ณผ Figure 1์ (Battaglia et al. 18)์ ์ ๋ฆฌ๋ ๋ด์ฉ์ด๋ค. ๋ํ์ ์ผ๋ก CNN์ ๋ค์ฌ๋ค๋ณด๋ฉด, CNN์ convolution layer๋ weight parameter๋ฅผ ์ง์ญ์ ์ผ๋ก ๊ณต์ ํจ์ผ๋ก์จ "์ธ์ ํ ๊ฐ๋ค ๊ฐ์ ์ ์๋ฏธํ ์๊ด๊ด๊ณ๋ฅผ ๊ฐ๋๋ค"๋ ํธํฅ์ ๊ฐ๊ฒ ๋๋ค.
Inductive Bias์ ์ญํ
Inductive Bias๋ ์๊น ๋งํ ๊ฒ์ฒ๋ผ Hypothesis Space๋ฅผ ๊ฒฐ์ ํ๋ ์ญํ ์ ํฉ๋๋ค. Hypothesis Space๋ ๋ค๋ฅธ ํํ์ผ๋ก ์ค๋ช ํ์๋ฉด '์ต์ ์ ๋ชจ๋ธ์ ์ฐพ๋ ๊ณต๊ฐ'์ ์๋ฏธํฉ๋๋ค. ์ ์ฒด ํ์ ๊ณต๊ฐ์ ํฌ๊ธฐ๊ฐ ํฌ๋ค๋ฉด ๋ฐ์ดํฐ์ ์ผ๋ฐํ ๊ด๊ณ๋ฅผ ๋ ์ ํํํ๋ hypothesis๋ฅผ ์ฐพ๊ธฐ ์ํด ์๋์ ์ผ๋ก ๋ง์ ๋ฐ์ดํฐ๊ฐ ํ์ํ๊ฒ ๋๊ณ ํ์ ๊ณต๊ฐ์ ํฌ๊ธฐ๊ฐ ์๊ณ ์ ์ ํ ๋ฒ์๋ก ์ ํ์์ผ ์ค๋ค๋ฉด ์๋์ ์ผ๋ก ์ ์ ๋ฐ์ดํฐ๋ก๋ ์ต์ ์ hypothesis๋ฅผ ์ฐพ๋ ๊ฒ์ด ์ฌ์์ง๋๋ค. ๊ทธ๋ ๊ธฐ ๋๋ฌธ์ ๋ ์ ์ ํ Inductive Bias๋ฅผ ์ ๊ณตํด ์ค ์ ์๋ค๋ฉด ๋ ์ ์ ๋ฐ์ดํฐ์ ์ผ๋ก๋ ์ผ๋ฐํ๋ ๋ชจ๋ธ์ ์ ์ฐพ์ ์ ์๊ฒ ๋ฉ๋๋ค.
ํ์ง๋ง ์ญ์ผ๋ก ์๊ฐํด ๋ณด๋ฉด Inductive Bias๋ ๋ง ๊ทธ๋๋ก Bias, ์ฆ ํธ๊ฒฌ์ ์ ๊ณตํ๊ฒ ๋ฉ๋๋ค. ๋ชจ๋ธ์ด ๊ฐ๊ณ ์๋ Inductive Bias๊ฐ ๋ฐ์ดํฐ์ ์๊ด๊ด๊ณ๋ฅผ ์ถฉ๋ถํ ์ ํํํ ์ ์๋ค๋ฉด ๋ฌธ์ ๋์ง ์๊ฒ ์ง๋ง, ๊ทธ๋ ์ง ์๋ค๋ฉด ์คํ๋ ค ํํํด์ผ ํ๋ ์์ญ์ ์์ ํํํ์ง ๋ชปํ๊ฒ ๋ ์๋ ์์ต๋๋ค. ๊ทธ๋ ๊ธฐ ๋๋ฌธ์ Inductive Bias๋ ์๋ ์ ๊ฒ์ด ๋ ์ ์์ต๋๋ค.
๊ทธ๋ฌํ ๊ด์ ์์ Vision Transformer (ViT)๋ Inductive Bias๊ฐ ์๋์ ์ผ๋ก ๋ฎ์ ๋ชจ๋ธ๋ก์ ๊ธฐ์กด์ CNN ์ด ์ง์ญ์ (local) ํน์ง์ผ๋ก๋ถํฐ ์ ์ญ์ (global) ํน์ง์ ์ฐพ์๊ฐ๋ ๊ฒ๊ณผ ๋ฌ๋ฆฌ, ์ฒ์๋ถํฐ ์ ์ญ์ ์ธ ํน์ง์ ์ฐพ์ผ๋ ค๊ณ ํฉ๋๋ค. ํ๋ง๋๋ก, ํธ๊ฒฌ ์์ด ๋ฌธ์ ๋ฅผ ํ๋ ค๊ณ ํ๋ค๊ณ ์๊ฐํ๋ฉด ๋ฉ๋๋ค. CNN์ ์ด๋ฏธ์ง๋ผ๋ ๋ฐ์ดํฐ๋ฅผ ํด์ํ๋ ๋ฐฉ์์ ์ง์ญ์ ํน์ง โฃ ๊ณ ์ฐจ์์ ํน์ง์ ํด์ํ๋๋ก ์ ์ํ๊ณ ์๋ ๋ฐ๋ฉด Transformer๋ ์ ์ฒด ๋ฐ์ดํฐ๋ฅผ ํ ๋ฒ์ ํด์ํ๋ ค๊ณ ํ๋ค๊ณ ์ดํดํ ์ ์์ต๋๋ค. ๊ทธ๋ ๊ธฐ ๋๋ฌธ์ 'ํธ๊ฒฌ ์๋ ๋ ์ผ๋ฐํ๋ hypothesis'๋ฅผ ์ฐพ์ ์๋ ์์ง๋ง, ๋ฐ๋ฉด์ ๊ทธ๋งํผ ์ถฉ๋ถํ ๋ฐ์ดํฐ๊ฐ ์์ผ๋ฉด ๋ถ๊ฐ๋ฅํฉ๋๋ค. Transformer์์ ๋ฐ์ดํฐ๊ฐ ์ ์ ๊ฒฝ์ฐ์ ๋ํ ์ฐ๊ตฌ (Pre-Training, Augmentation ๋ฑ)๊ฐ ํ๋ฐํ ์ด๋ฃจ์ด์ง ์ด์ ์ ๋๋ค.
Transformers lack some of the inductive biases inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well when trained on insufficient amounts of data.
์ถ๊ฐ๋ก ์กฐ๊ธ ๋ ์ค๋ช ํด๋ณด์๋ฉด
Vision Transformer (ViT) ๋ ผ๋ฌธ์ ์ ViT๊ฐ CNN์ ๋นํด์ ์ด๋ฏธ์ง ๋ฐ์ดํฐ์ ๋ํ Inductive Bias๊ฐ ๋ถ์กฑํ์ง๋ฅผ ์ถ๊ฐ๋ก ์ค๋ช ํ๊ณ ์์ต๋๋ค. ์ด๋ฏธ์ง ๋ฐ์ดํฐ๋ฅผ ๋ถ์ํ๋ ๋ฐ ์์ด์ CNN์ parameter sharing์ ํตํ hierarchical view๋ฅผ ์ ๊ณตํ๋ ๋ฐ๋ฉด, ViT์์ ํ๋ผ๋ฏธํฐ ๊ณต์ ๋ MLP ๋ ์ด์ด๊ฐ ๊ฑฐ์ ์ ์ผํฉ๋๋ค. ๋ฟ๋ง ์๋๋ผ ViT๋ ๊ตฌ์กฐ์ ์ผ๋ก ํจ์น ๊ฐ์ ์๊ด ๊ด๊ณ ํด์ ๋ฐฉ์ ์กฐ์ฐจ๋ ์์ฒด์ ์ผ๋ก ํ์ตํด์ผ ํฉ๋๋ค. (CNN์ ํฝ์ ๊ฐ ํด์ ๋ฐฉ์์ 'hierarchical'์ด๋ผ๊ณ ๊ตฌ์กฐ์ ์ผ๋ก ์ ์) ์ฆ, ์ด๋ฏธ์ง ํด์์ ๋ํด ํจ์น ๊ฐ์ ์๊ด๊ด๊ณ ์์ฒด๋ฅผ ํ์ตํ๋๋ก ํ๋ ์์ ๋ฅผ ๋ ์ฃผ๊ธฐ ๋๋ฌธ์ ์๋์ ์ผ๋ก Inductive Bias๊ฐ ๋ ๋ฎ๊ณ ์ด๋ฅผ ํ์ตํ๊ธฐ ์ํด ํ์ํ ๋ฐ์ดํฐ ์๊ฐ ๋ ๋ง๋ค๊ณ ์ด์ผ๊ธฐํ ์ ์์ต๋๋ค.
๐ Reference
- Battaglia et al. "Relational inductive biases, deep learning, and graph networks"
- Chen et al. "When Vision Transformer Outperform ResNets Without Pre-Training or Stron Data Ayugmentations", ICLR 2022.
- Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).