๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

IN DEPTH CAKE/ML-WIKI

<ML๋…ผ๋ฌธ> CVAE์— ๋Œ€ํ•˜์—ฌ (feat. ๋ˆ„๊ฐ€ ์ง„์งœ CVAE์ธ๊ฐ€? ํ•˜๋‚˜์˜ ์ด๋ฆ„, ๋‘ ๊ฐœ์˜ ๊ธฐ๋ฒ•)

 


<๋“ค์–ด๊ฐ€๊ธฐ์— ์•ž์„œ>

๋ณธ ๊ธ€์€ ๋…ผ๋ฌธ์˜ ์ƒ์„ธ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๋Š” ํฌ์ŠคํŒ…์€ ์•„๋‹ˆ์—์š”.

๋‹ค๋งŒ, ๋‘ ๊ฐœ์˜ ๋…ผ๋ฌธ์ด ํ•˜๋‚˜์˜ ์ด๋ฆ„์œผ๋กœ ๋ถˆ๋ฆฌ๊ณ  ์žˆ๊ธธ๋ž˜, '์ด์— ๋Œ€ํ•œ ํ˜ผ์„ ์„ ์ •๋ฆฌํ•˜๋Š” ๊ธ€์„ ์จ๋ณด์ž'ํ•˜๋Š” ๋งˆ์Œ์œผ๋กœ ๊ธ€์„ ์ผ์Šต๋‹ˆ๋‹ค.

๋ฌผ๋ก  ๊ฐ„๋žตํ•˜๊ฒŒ ๊ฐ๊ฐ์˜ ๋…ผ๋ฌธ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๊ธฐ๋Š” ํ•ฉ๋‹ˆ๋‹ค๋งŒ, ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๊ฐ ๋…ผ๋ฌธ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๋Š” ๊ธ€์„ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.

 

๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.


 

 

์•ˆ๋…•ํ•˜์„ธ์š”. ์˜ค๋Š˜์€ ๊ฐœ์ธ์ ์œผ๋กœ ํฅ๋ฏธ๋กœ์› ๋˜ ํ˜„์ƒ์— ๋Œ€ํ•ด ์ ์–ด๋ณผ๊นŒ ํ•ฉ๋‹ˆ๋‹ค.

 

์ด ๋ณธ๋ฌธ์„ ์ฝ๊ณ  ๊ณ„์‹  99.9 % ์˜ ๋ถ„๋“ค์€ "CVAE"๋ผ๋Š” ํ‚ค์›Œ๋“œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜์…จ์„ ๊ฒƒ ๊ฐ™์•„์š”. ์—ฌ๋Ÿฌ๋ถ„์ด ์ด ๊ธ€์„ ํด๋ฆญํ•˜์‹ค ๋•Œ ์ƒ๊ฐํ•˜์‹  CVAE๋Š” ์–ด๋–ค ๋…€์„์ธ๊ฐ€์š”? ์งˆ๋ฌธ์ด ์ด์ƒํ•˜์ฃ ? ์ œ๊ฐ€ ์˜ค๋Š˜ ์ด ๊ธ€์„ ์“ฐ๊ธฐ๋กœ ๋งˆ์Œ๋จน์€ ๋ฐ๋Š” ์ด์œ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ œ๊ฐ€ ๊ฒ€์ƒ‰์„ ํ•˜๋‹ค๊ฐ€ ๋ฐœ๊ฒฌํ•œ ํ˜„์ƒ์ด ์žˆ๋Š”๋ฐ, ๋ฐ”๋กœ ๋‘ ๊ฐœ์˜ (์œ ๊ด€ํ•˜์ง€๋งŒ ์„œ๋กœ ๋‹ค๋ฅธ) ๋…ผ๋ฌธ์ด Conditional Variational Auto-Encoder (CVAE)๋ผ๋Š” ํ•˜๋‚˜์˜ ์ด๋ฆ„์œผ๋กœ ๋ช…๋ช…๋˜๊ณ  ์žˆ๋”๋ผ๊ณ ์š”. ๊ทธ๋ž˜์„œ ๋‹ค์Œ ์ฃผ์ œ๋กœ ๊ธ€์„ ์จ๋ณด๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

 

 

 

 

 

๋ˆ„๊ฐ€ ์ง„์งœ CVAE์ธ๊ฐ€?

(๋‘๋‘ฅ)

 

 

 

 

 

 

CVAE๋ผ๋Š” ์ด๋ฆ„์˜ ๋‘ ๋…ผ๋ฌธ

 

 

๋ณธ ๊ธ€์˜ ๊ธฐํš์€ ์ œ๊ฐ€ CVAE ์˜คํ”ˆ ์†Œ์Šค ์ฝ”๋“œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋ฉด ์„œ๋ถ€ํ„ฐ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์„ ์ฝ๊ณ  ์ œ๊ฐ€ ์ดํ•ดํ•œ ๋‚ด์šฉ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ CVAE ์ฝ”๋“œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋Š”๋ฐ, ๊ฒ€์ƒ‰ํ•˜๋ฉด ํ• ์ˆ˜๋ก ๋ญ”๊ฐ€ ์ด์ƒํ•˜๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ค์—ˆ์–ด์š”. ์ œ๊ฐ€ ์ฝ์€ ๋…ผ๋ฌธ ๋‚ด์šฉ๊ณผ ๋งž์ง€ ์•Š์€ github ์ฝ”๋“œ๊ฐ€ ์žˆ๊ฑฐ๋‚˜, ํ˜น์€ ์ œ๊ฐ€ ์ฝ์€ ๋…ผ๋ฌธ๊ณผ ๋‹ค๋ฅธ ๋‚ด์šฉ์˜ ์„ค๋ช…๋“ค์ด ์žˆ๋”๋ผ๊ณ ์š”. ๊ทธ๋ž˜์„œ ์•Œ๊ฒŒ ๋œ ๊ฒŒ, ์‚ฌ๋žŒ๋“ค์ด CVAE๋กœ ๋ถ€๋ฅด๋Š” ๊ธฐ๋ฒ•์ด ์™„์ „ํžˆ ๋‹ค๋ฅธ ๋‘ ๋…ผ๋ฌธ์˜ ๋‚ด์šฉ์ด๋ผ๋Š” ์‚ฌ์‹ค์ด์—์š”.

 

ํ•˜๋‚˜๋Š”, DP Kingma ์•„์ €์”จ (?)์˜ (Kingma et al. "Semi-supervised Learning with Deep Generative Models", NIPS 2014)์ด๊ณ , ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์ดํ™๋ฝ ๊ต์ˆ˜๋‹˜ ๋žฉ์—์„œ ๋‚˜์˜จ (Sohn et al. "Learning Structured Output Representation using Deep Conditional Generative Models" NIPS 2015)์ž…๋‹ˆ๋‹ค. ์ œ๊ฐ€ ๊ฒ€์ƒ‰ํ•˜๋ฉด์„œ ํฅ๋ฏธ๋กœ์› ๋˜ ์ ์ด, Kingma ์•„์ €์”จ ๋…ผ๋ฌธ ๋‚ด์šฉ์„ ๊ตฌํ˜„ํ•œ github ์ฝ”๋“œ์ธ๋ฐ ๋ ˆํผ๋Ÿฐ์Šค๋กœ Sohn et al. ์ด ๋‹ฌ๋ ค์žˆ๋‹ค๊ฑฐ๋‚˜ (Readme ์ˆ˜์ • ํ›„ PR ๋‚ ๋ ธ์–ด์š”), (Sohn et al.) ๋…ผ๋ฌธ ์„ค๋ช…์— (Kingma et al.)์˜ ๋…ผ๋ฌธ ์ฝ”๋“œ๊ฐ€ ์ฒจ๋ถ€๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ๋“ค์ด ์žˆ๋”๋ผ๊ณ ์š”. ์‹ฌ์ง€์–ด, ๋ช‡๋ช‡ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ ˆํผ๋Ÿฐ์Šค๋ฅผ ์ž˜๋ชป ๋‹ค๋Š” ๊ฒฝ์šฐ๋„ ์žˆ์—ˆ์–ด์š”.

 

๊ทธ๋Ÿฐ๋ฐ, ๊ทธ๊ฑฐ ์•„์‹œ๋‚˜์š”? ๋†€๋ž๊ฒŒ๋„ Kingma et al. ๋…ผ๋ฌธ์˜ ๋ณธ๋ฌธ์—๋Š” ํ•œ ๋ฒˆ๋„ Conditional Variational Auto-Encoder ํ˜น์€ CVAE๋ผ๋Š” ๋ง์ด ๋“ฑ์žฅํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ •ํ™•ํžˆ ๋…ผ๋ฌธ์—์„œ๋Š” Conditional generative model (M2)๋ผ๊ณ  ๋ถ€๋ฅด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ๊ธฐ๋ฒ•์˜ ์ƒ๊น€์ƒˆ๋ฅผ ๋ณด์ž๋ฉด CVAE๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒŒ ๋„ˆ๋ฌด ์ž์—ฐ์Šค๋Ÿฌ์›Œ์š”. (์ž์„ธํ•œ ์ด์œ  ์„ค๋ช…์€ ๋’ค์—์„œ ํ• ๊ฒŒ์š”.) ๋ฐ˜๋Œ€๋กœ Sohn et al. ๋…ผ๋ฌธ์—์„œ๋Š” ๋ช…ํ™•ํ•˜๊ฒŒ CVAE ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค๊ณ  ์ด์•ผ๊ธฐํ•˜๊ณ  ์žˆ์–ด์š”. ์•„๋ž˜์˜ ๊ทธ๋ฆผ์€ Sohn et al. ๋…ผ๋ฌธ์˜ ๋ณธ๋ฌธ์ธ๋ฐ์š”, ์—ฌ๊ธฐ์„œ [15]์— ํ•ด๋‹นํ•˜๋Š” ๋ ˆํผ๋Ÿฐ์Šค๊ฐ€ ๋ฐ”๋กœ (Kingma et al. NIPS 2014) ๋…ผ๋ฌธ์ด์—์š”.

 

Sohn et al. "Learning Structured Output Representation using Deep Conditional Generative Models" NIPS 2015 ๋ณธ๋ฌธ ์บก์ณ.

 

ํฅ๋ฏธ๋กญ์ง€ ์•Š๋‚˜์š”? ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ˆ„๊ฐ€ ์ง„์งœ CVAE์ธ๊ฐ€์— ๋Œ€ํ•ด ์ €๋ณด๊ณ  ๊ฒฐ๋ก ์„ ๋‚ด๋ฆฌ๋ผ๊ณ  ํ•˜์‹ ๋‹ค๋ฉด, ๋‘˜ ๋‹ค CVAE๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ๋ถˆ๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค. (Sohn et al., 2015) ๋…ผ๋ฌธ์˜ ๊ฒฝ์šฐ ์ €์ž๋“ค์ด ์ œ์•ˆ ๊ธฐ๋ฒ• ์ด๋ฆ„์„ CVAE๋ผ๊ณ  ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๋…ผ๋ž€์˜ ์—ฌ์ง€๊ฐ€ ์—†๊ณ , (Kingma et al., 2014)์˜ ๊ฒฝ์šฐ ์ด๋ฏธ ๋‹ค์–‘ํ•œ ํ›„์† ๋…ผ๋ฌธ๋“ค์—์„œ CVAE๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ํ•ด๋‹น ๋…ผ๋ฌธ์„ ์ธ์šฉํ•˜๊ณ  ์žˆ์–ด์š”. (๋”์šฑ์ด DP Kingma ์•„์ €์”จ๊ฐ€ VAE ๋…ผ๋ฌธ์„ ์“ด ์žฅ๋ณธ์ธ์ธ ๋ฐ๋‹ค, VAE์˜ ๋ณ€ํ˜• + conditional generative model์ด๋ผ๊ณ  ํ•˜๋‹ˆ conditional vae๋ผ๋Š” ์ด๋ฆ„์ด ๊ฝค ์ž์—ฐ์Šค๋Ÿฌ์šฐ๋‹ˆ๊นŒ์š”)

 

Qian et al. "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss", ICML 2019.

 

์ด๋ฏธ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด (Kingma et al. 2014)์˜ Conditional generative model์„ CVAE๋ผ๊ณ  ๋ถ€๋ฅด๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ˆ„๊ฐ€ ์ง„์งœ CVAE๋‹ค๋ฅผ ๋…ผํ•˜๋Š” ๊ฒƒ์€ ๋ฌด์˜๋ฏธํ•œ ๊ฒƒ ๊ฐ™์•„์š”. ๋‹ค๋งŒ, ์ด ๊ธ€์„ ์ฝ์œผ์‹œ๋Š” ๋ถ„๋“ค์˜ ๊ฒฝ์šฐ, CVAE์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•˜๋Š” ์ž๋ฃŒ๋ฅผ ๋งŒ๋“œ์‹œ๊ฑฐ๋‚˜ ๋…ผ๋ฌธ์—์„œ ์ธ์šฉํ•˜์‹ค ๋•Œ ๋ ˆํผ๋Ÿฐ์Šค ๊ด€๋ฆฌ์— ์œ ์˜ํ•˜์…”์•ผ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ „๋‹ฌํ•˜๊ณ  ์‹ถ์—ˆ์–ด์š”. ์™œ๋ƒํ•˜๋ฉด, ์ƒ๊ฐ๋ณด๋‹ค ๋งŽ์€ ๋ฌธ์„œ๋“ค์—์„œ ์ด๋“ค์˜ ๋ ˆํผ๋Ÿฐ์Šค๋ฅผ ์ž˜๋ชป ๋‹ฌ๊ฑฐ๋‚˜, ๋‘ ๊ฐœ์˜ ๋‚ด์šฉ์„ ์„ž์–ด์„œ ์„ค๋ช…ํ•˜๋Š” ๊ฒฝ์šฐ๋“ค์„ ๋ดค๊ฑฐ๋“ ์š”. ์ด๋Ÿฐ ์‚ฌ์†Œํ•œ ๋ถ€๋ถ„์—์„œ ๊ธ€์˜ ์‹ ๋ขฐ๋„๊ฐ€ ๊ฒฐ์ •๋˜๊ธฐ๋„ ํ•˜๊ณ , ๋Œ€๋ถ€๋ถ„ ๊ทธ๋Ÿฐ ๋ชฉ์ ์œผ๋กœ ๊ธ€์„ ์ž‘์„ฑํ•˜์‹ ๋‹ค๋ฉด ์ฝ๋Š” ๋…์ž๋“ค์ด ๊ทธ๊ฒƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐฐ์šธ ํ™•๋ฅ ์ด ๋†’๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋ช…ํ™•ํžˆ ํ•ด๋ณด๋Š” ๊ฒŒ ์ข‹์ง€ ์•Š์„๊นŒ ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.

 

 

๊ธ€์„ ์‹œ์ž‘ํ•˜๊ธฐ์— ์•ž์„œ ๋งํ–ˆ๋˜ ์ฃผ์ œ์˜ ๊ฒฐ๋ก ์ด ๋ฒŒ์จ ๋‚˜๋ฒ„๋ ธ๋„ค์š”. ํ•˜์ง€๋งŒ, ์—ฌ๊ธฐ์—์„œ ๋งˆ๋ฌด๋ฆฌํ•˜๊ธฐ๋Š” ์กฐ๊ธˆ ์•„์‰ฌ์šฐ๋‹ˆ, ๊ฐ ๋…ผ๋ฌธ์˜ ๊ธฐ๋ฒ•์ด ์–ด๋–ป๊ฒŒ ์ƒ๊ฒผ๊ธธ๋ž˜ CVAE๋ผ๊ณ  ์ด๋ฆ„์ด ๋ถ™์—ˆ๋Š”์ง€ ๊ฐ„๋žตํžˆ ์„ค๋ช…ํ•ด ๋ณผ๊ฒŒ์š”. ์•„๋ž˜์˜ ์„ค๋ช…์€ VAE๋Š” ์•Œ๊ณ  ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์ž‘์„ฑํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

 

 

 

CVAE๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ๊ฐ๊ฐ์˜ ๋…ผ๋ฌธ์— ๋Œ€ํ•˜์—ฌ

 

๐Ÿ’Ž (DP Kingma et al. 2014)์˜ CVAE โŽฏ Conditional generative model (M2)

 

(Kingma et al. 2014)์—์„œ ์ œ์•ˆํ•˜๊ณ  ์žˆ๋Š” Conditional generative model์€ VAE์˜ ๋ณ€ํ˜•์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. VAE์™€ ๋™์ผํ•˜๊ฒŒ ์ž…๋ ฅ $\boldsymbol{x}$์˜ log-likelihood๋ฅผ maximizationํ•˜๋Š”๊ฒƒ์ด ๋ชฉํ‘œ์ด์ง€๋งŒ,  ๊ธฐ์กด์˜ VAE๊ฐ€ ์ž…๋ ฅ$\boldsymbol{x}$ ๊ณผ latent embedding $\boldsymbol{z}$๋กœ๋งŒ ํ‘œํ˜„๋˜์—ˆ๋˜ ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, Conditional generative model์—์„œ๋Š” label ์ •๋ณด์ธ $y$๊ฐ€ latent embedding $\boldsymbol{z}$๋ฅผ ์ถ”๋ก ํ•  ๋•Œ ์‚ฌ์šฉ๋  ๋ฟ ์•„๋‹ˆ๋ผ, $\boldsymbol{x}$๋ฅผ ์ƒ์„ฑํ•  ๋•Œ๋„ ์‚ฌ์šฉ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์š”์•ฝํ•˜์—ฌ VAE์™€ ๋น„๊ตํ•˜๋ฉด ์•„๋ž˜์˜ ํ‘œ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

  VAE (DP Kingma et al. 2014) Conditional generative model
Inference model $q_{\phi}(\boldsymbol{z}\vert\boldsymbol{x})$ $q_{\phi}(\boldsymbol{z}\vert\boldsymbol{x},y)$
$q_{\phi}(y\vert \boldsymbol{x})$
Generative model $p_{\theta}(\boldsymbol{x}\vert \boldsymbol{z})$ $p_{\theta}(\boldsymbol{x}\vert \boldsymbol{z}, y)$

 

์กฐ๊ธˆ ์–ด๋ ต๊ฒŒ ๋Š๊ปด์ง€์‹ ๋‹ค๋ฉด ์œ„์˜ ํ‘œ๋ฅผ ๋‹ค์Œ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด ๊ฐ„๋žตํ•˜๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์•„์š”:

 

 

VAE์—์„œ ์ธ์ฝ”๋”๊ฐ€ ์ถ”๋ก  ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ , ๋””์ฝ”๋”๊ฐ€ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ตฌ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์—, CVAE๋Š” ๊ฐ๊ฐ ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”์˜ ์ถœ๋ ฅ์œผ๋กœ ๋ผ๋ฒจ ์ •๋ณด์ธ $y$๊ฐ€ ์ถ”๊ฐ€๋˜๋Š” ํ˜•ํƒœ๋ผ๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ์‹ค์ œ ์ƒ์„ฑ๋ชจ๋ธ $p(\boldsymbol{x}\vert\boldsymbol{z}, y)$์„ ํ†ตํ•ด ์ฃผ์–ด์ง„ ๋ผ๋ฒจ ๊ฐ’์— ๋”ฐ๋ฅธ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ณธ ๋ชจ๋ธ์˜ ๋™์ž‘์„ ์ข€ ๋” ์ž์„ธํžˆ ์„ค๋ช…ํ•ด ์ฃผ๋Š” ๊ทธ๋ฆผ์€ ์•„๋ž˜์˜ ๊ทธ๋ฆผ์ž…๋‹ˆ๋‹ค. ์ด ๊ทธ๋ฆผ์€ ์ œ๊ฐ€ ๊ทธ๋ฆฐ ๊ทธ๋ฆผ์€ ์•„๋‹ˆ๊ณ ์š”. ์ดํ™œ์„๋‹˜์˜ slide share ์žฅํ‘œ์—์„œ ๋ฐœ์ทŒํ•˜์˜€์Šต๋‹ˆ๋‹ค.

 

 

์ด ๊ทธ๋ฆผ์€ probabilistic graphical model์€ ์•„๋‹ˆ๊ณ , ๋„คํŠธ์›Œํฌ์˜ ๋™์ž‘์„ ๊ฐ„๋žตํ™”ํ•ด ๋†“์€ ๊ฑฐ์˜ˆ์š”. ($h$๋Š” ๋ ˆ์ด์–ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์‹œ๋ฉด ๋  ๊ฒƒ ๊ฐ™์•„์š”) ์œ„์˜ ๊ทธ๋ฆผ์—์„œ $y$์— ํ•ด๋‹นํ•˜๋Š” ๋ถ€๋ถ„์„ ์—†์• ๋ฉด VAE์˜ ๋™์ž‘๊ณผ ๊ฐ™๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ ๋ณธ ๊ธฐ๋ฒ•์€ label ์ •๋ณด์ธ $y$๋ฅผ condition์œผ๋กœ ํ•˜๋Š” VAE๋กœ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”. ๋”ฐ๋ผ์„œ, ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๋ณธ ๊ธฐ๋ฒ•์„ conditional variational autoencodere, ์ฆ‰ CVAE๋กœ ๋ถ€๋ฅด๊ณ  ์žˆ๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

๐Ÿ’Ž (Sohn et al. 2015)์˜ CVAE

Sohn et al. ์˜ CVAE๋Š” ์• ์ดˆ์— observation์ธ evidence $\boldsymbol{x}$์˜ log-likelihood $\log p(\boldsymbol{x})$๋ฅผ maximizeํ•˜๋Š” ๊ฒƒ๊ณผ ํ•™์Šต ๋ชฉํ‘œ ์ž์ฒด๊ฐ€ ๋‹ค๋ฆ…๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ž…๋ ฅ $\boldsymbol{x}$๋กœ๋ถ€ํ„ฐ high-dimensional output $\boldsymbol{y}$๋ฅผ ์ถ”๋ก ํ•˜๋Š” conditional distribution $p(\boldsymbol{y}\vert\boldsymbol{x})$์„ ์ฐพ๋Š” ๊ฒƒ์ด CVAE์˜ ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค. ์ฐธ๊ณ ๋กœ ์—ฌ๊ธฐ์„œ $\boldsymbol{y}$๋Š” label์ด ์•„๋‹™๋‹ˆ๋‹ค. ๋ฌดํŠผ ๋ญ”์ง€๋Š” ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ ๊ณ ์ฐจ์›์˜ ๋ฌด์–ธ๊ฐ€์˜ˆ์š”.

 

 

We model the distribution of high-dimensional output space as a generative model conditioned on the input observation. (์ค‘๋žต) The CVAE is a conditional-directed graphical model whose input observations modulate the prior on Gaussian latent variables that generate the outputs.

 

 

๋” ์ž์„ธํ•œ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๊ธฐ์— ์•ž์„œ, CVAE์˜ ํ™œ์šฉ ์˜ˆ์‹œ๋ฅผ ๋จผ์ € ๋ณด์—ฌ๋“œ๋ฆด๊ฒŒ์š”. ์•„๋ž˜์˜ ๊ทธ๋ฆผ์€ Sohn et al. ๋…ผ๋ฌธ์— ์žˆ๋Š” ์‹คํ—˜ ๊ฒฐ๊ณผ์ž…๋‹ˆ๋‹ค. ๋งจ ์œ—์ค„์˜ ground-truth ๊ทธ๋ฆผ์˜ 1/4์— ํ•ด๋‹นํ•˜๋Š” ์ง„ํ•œ ์˜์—ญ์ด ์ž…๋ ฅ $\boldsymbol{x}$๊ฐ€ ๋˜๊ณ , ์—ฐํšŒ์ƒ‰ ๋ถ€๋ถ„์ด ์ถœ๋ ฅ์ธ $\boldsymbol{y}$ ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

 

CVAE ๊ธฐ๋ฒ•์€ ์ž…๋ ฅ ๋ณ€์ˆ˜ $\boldsymbol{x}$, ์ถœ๋ ฅ ๋ณ€์ˆ˜ $\boldsymbol{y}$ ๊ทธ๋ฆฌ๊ณ  ์€๋‹‰ ๋ณ€์ˆ˜ (latent vadriable) $\boldsymbol{z}$๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. (๋‹ค์‹œ ํ•œ๋ฒˆ ๊ฐ•์กฐ, ์—ฌ๊ธฐ์„œ $\boldsymbol{y}๋Š” Kingma et al. ๋…ผ๋ฌธ๊ณผ ๋‹ฌ๋ฆฌ ๋ผ๋ฒจ์ด ์•„๋‹™๋‹ˆ๋‹ค) ์ด ์„ธ ๊ฐœ์˜ ๋ณ€์ˆ˜์˜ ๊ด€๊ณ„ ์ •์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ CVAE ๊ธฐ๋ฒ•์ด ์ •์˜๋˜๋Š”๋ฐ์š”, ๋‹ค์Œ์˜ ๊ทธ๋ฆผ์€ CVAE์—์„œ ์„ธ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

 

 

์œ„์˜ ๊ทธ๋ฆผ์—์„œ ๋ณด์‹œ๋ฉด ์ผ๋ฐ˜์ ์ธ CNN์ด $\boldsymbol{x}$๋กœ๋ถ€ํ„ฐ $\boldsymbol{y}$๋ฅผ ๋ฐ”๋กœ ์ถ”๋ก ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š”๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ, CVAE์˜ conditional graphical model (CGM)์€ latent variable์ธ $\boldsymbol{z}$๋กœ $\boldsymbol{y}$๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค ($p(\boldsymbol{y}\vert\boldsymbol{x}, \boldsymbol{z})$). ์œ„์˜ ๊ทธ๋ฆผ์—์„œ (b)๋Š” generative model์„ ๋ณด์—ฌ์ฃผ๊ณ , (c)๋Š” inference model์„ ๋ณด์—ฌ์ฃผ๊ณ , (d)๋Š” ์ด๋“ค์„ ํ•ฉ์ณ๋†“์€ ํ˜•์ƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. (b)์˜ ์ƒ์„ฑ๋ชจ๋ธ์„ ์‚ดํŽด๋ณด๋ฉด, $\boldsymbol{y}$์˜ ์ƒ์„ฑ ๋ชจ๋ธ์ด ๋‹จ์ˆœํžˆ $\boldsymbol{x}$๋งŒ์„ ๊ฐ€์ง€๊ณ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ค‘๊ฐ„์— $\boldsymbol{z}$ ์—ญ์‹œ condition์œผ๋กœ ์ฐจ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, (a) ๊ทธ๋ฆผ๊ณผ ๋‹ค๋ฅด๊ฒŒ $\boldsymbol{z}$๋ฅผ ์ฃผ์ž…ํ•จ์œผ๋กœ์„œ ํ•˜๋‚˜์˜ ์ž…๋ ฅ $\boldsymbol{x}$๋กœ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋Š” ์ถœ๋ ฅ ๊ฐ’์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” multi-modality๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

multi-modality๋Š” one-to-many๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์š”. ์ด ๋ง์€ ํ•˜๋‚˜์˜ ์ž…๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฐ€๋Šฅ์„ฑ์žˆ๋Š” ์ถœ๋ ฅ๋“ค์„ ์ƒ์„ฑํ•ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค. CVAE์˜ ์ด๋Ÿฌํ•œ ํŠน์„ฑ๋•Œ๋ฌธ์— multi-modality๋ฅผ ๊ณ ๋ คํ•ด์•ผํ•˜๋Š” ๋ถ„์•ผ์—์„œ ๋งŽ์ด ์ฐจ์šฉ๋˜๊ณ ์žˆ์–ด์š”. (์˜ˆ, trajectory prediction ์ง€๊ธˆ๊นŒ์ง€ ๊ฑธ์–ด์˜จ ๋ณดํ–‰์ž์˜ trajectory๊ฐ€ ์žˆ๋‹ค๊ณ  ํ–ˆ์„๋•Œ, ํ•˜๋‚˜์˜ ์˜ˆ์ธก๊ฐ’๋งŒ์„ ๋ฐ˜ํ™˜ํ•˜๋Š” ๊ฒƒ์€ ๋ฌธ์ œ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ๊ฐœ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค„ ํ•„์š”๊ฐ€ ์žˆ์ฃ .)

 

์ด๋Ÿฌํ•œ ์ƒ์„ฑ ๋ชจ๋ธ์„ ๊ฐ–๋Š” CVAE๋Š” ์–ด๋–ป๊ฒŒ ํ•™์Šต๋ ๊นŒ์š”? ๋‹ค์‹œ ์ฒ˜์Œ์œผ๋กœ ๋Œ์•„๊ฐ€์„œ, CVAE์˜ ๋ชฉ์ ์€ conditional log-likelihood maximization์ž…๋‹ˆ๋‹ค. ๋‹ค์‹œ ๋งํ•ด์„œ $\log p(\boldsymbol{y}\vert\boldsymbol{x})$๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์ธ๋ฐ, VAE์—์„œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ด๋ฅผ ๋ฐ”๋กœ maximizationํ•˜์ง€ ๋ชปํ•˜๊ณ  ํ•ด๋‹น ๊ฐ’์˜ lower bound๋ฅผ maximizationํ•˜๋Š” ํ˜•ํƒœ๋กœ ํ•™์Šต์ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  conditional log-likelihood์˜ lower bound๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (๋…ผ๋ฌธ์˜ ๋ณธ๋ฌธ๊ณผ ์กฐ๊ธˆ ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ ์œ ๋„ํ•˜์˜€์Šต๋‹ˆ๋‹ค)

 

$$ \begin{align*}

&\log p_{\theta}(\boldsymbol{y}\vert\boldsymbol{x}) \\

& = \log \int_z p(\boldsymbol{y},\boldsymbol{z}\vert\boldsymbol{z})\\ & = \log \int_z \frac{p(\boldsymbol{y}, \boldsymbol{z}\vert\boldsymbol{x})}{q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})} q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y}) d\boldsymbol{z}\\ & \geq \int_z q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})\log\frac{p(\boldsymbol{y}, \boldsymbol{z}\vert\boldsymbol{x})}{q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})} dz \\&=\int_z q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})\log\frac{p(\boldsymbol{y}\vert \boldsymbol{z},\boldsymbol{x})p(\boldsymbol{z}\vert\boldsymbol{x})}{q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})} dz \\ &=-\text{KL}(q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})\vert\vert p(\boldsymbol{z}\vert\boldsymbol{x}))+\mathbb{E}_{q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})}[\log p(\boldsymbol{y}\vert\boldsymbol{x},\boldsymbol{z})]\end{align*}$$

 

CVAE์˜ conditional log-likelihood์˜ lower bound ๋„ VAE์™€ ์œ ์‚ฌํ•˜๊ฒŒ regularizer์™€ expected reconstruction term์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๋’ค์— ์žˆ๋Š” ํ•ญ์˜ ์—ฐ์‚ฐ์„ ์œ„ํ•ด VAE์˜ Stochastic Gradient Variational Bayes (SGVB)๋ฅผ ์‚ฌ์šฉํ•ด์„œ reparameterization trick์œผ๋กœ ์—ฐ์‚ฐ๋ฉ๋‹ˆ๋‹ค.

 

(+) SGVB ์—ฐ์‚ฐ ์‹œ Monte-Carlo (MC) Sampling์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ธ๋ฐ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” Impotance Sampling๋„ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋…ผ๋ฌธ์„ ์ฐธ์กฐํ•˜์‹œ๊ฑฐ๋‚˜, ์ถ” ํ›„ Importance Sampling๊ณผ ๊ด€๋ จํ•œ ๊ธ€์„ ์“ธ ๋•Œ ์†Œ๊ฐœ๋“œ๋ ค๋ณผ๊ฒŒ์š”.

 

๊ทธ๋Ÿฌ๋ฉด ๊ตฌ์ฒด์ ์œผ๋กœ conditional log-likelihood์˜ maximization์€ ์–ด๋–ค ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•ด์„œ ์ด๋ฃจ์–ด์งˆ๊นŒ์š”? graphical model์— ๋‚˜ํƒ€๋‚œ $q(\boldsymbol{z}\vert\boldsymbol{x},\boldsymbol{y})$, $p(\boldsymbol{z}\vert\boldsymbol{x})$,  ๊ทธ๋ฆฌ๊ณ $p(\boldsymbol{y}\vert\boldsymbol{x},\boldsymbol{z})$ ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋„คํŠธ์›Œํฌ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ์ƒ์„ฑ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ $\theta$๋กœ, ์ถ”๋ก  ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ $\phi$๋กœ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์ง€๋งŒ, ์—„๋ฐ€ํ•œ ์˜๋ฏธ์—์„œ generative model์— ์‚ฌ์šฉ๋˜๋Š” ๋„คํŠธ์›Œํฌ๋Š” ๋‘ ๊ฐœ์ธ ์…ˆ์ž…๋‹ˆ๋‹ค.

 

์ด๋ ‡๊ฒŒ ๋ณด๋‹ˆ, (D.P. Kingma 2014)์˜ ๋…ผ๋ฌธ๊ณผ ๋ชฉ์ ๋ถ€ํ„ฐ ๊ทธ ํ˜•ํƒœ๊ฐ€ ๊ต‰์žฅํžˆ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ์•„์‹œ๊ฒ ๋‚˜์š”? ์ข€ ๋” ์ž์„ธํžˆ ์„ค๋ช…ํ•˜๋ ค๋ฉด ๋ณธ ๊ธ€์˜ ์ทจ์ง€์™€๋Š” ๋ฉ€์–ด์งˆ ๊ฒƒ ๊ฐ™์œผ๋‹ˆ, ๋” ์ž์„ธํ•œ ๋‚ด์šฉ์€ ํ•„์š”ํ•˜๋‹ค๋ฉด ๋‚˜์ค‘์— ๋‹ค๋ค„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ์ด์ œ ๋งˆ๋ฌด๋ฆฌ, CVAE ๋…ผ๋ฌธ์€ ์™œ CVAE๋ผ๊ณ  ์ด๋ฆ„์„ ๋ถ™์˜€์„๊นŒ์š”? VAE์˜ ๋ณ€ํ˜•์ด๋ผ๊ณ  ํ•˜๊ธฐ์—๋Š” ๋ชฉ์ ํ•จ์ˆ˜๋ถ€ํ„ฐ ๋ชจ์–‘์ด ๋‹ฌ๋ผ์„œ ํ—ท๊ฐˆ๋ฆฌ๋Š”๋ฐ ๋ง์ด์ฃ . ์ €์ž๋“ค๋„ ์ด์— ๋Œ€ํ•ด์„œ ๋…ผ๋ฌธ์—์„œ ์–ธ๊ธ‰ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. 

 

 

conditional distribution์˜ ๋ถ„ํฌ๋ฅผ variational inference ๋ฐฉ์‹์œผ๋กœ ์ถ”์ •ํ•œ๋‹ค๋Š” ์ ์—์„œ, ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ถ”์ • ๊ณผ์ •์—์„œ SGVB๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์ ์—์„œ VAE์˜ ๋ณ€ํ˜•์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๊ณ , conditional likelihood์— ๋Œ€ํ•œ VAE ํ˜•ํƒœ๋ฅผ ์ ์šฉํ•˜๊ณ  ์žˆ์œผ๋ฏ€๋กœ CVAE๋ผ๊ณ  ์ด๋ฆ„ ๋ถ™์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

๋งˆ๋ฌด๋ฆฌ,

 

๊ธ€์˜ ์†Œ์žฌ๊ฐ€ ์ƒ๊ฐ๋‚ฌ์„ ๋•Œ, ๊ฝค ๋„์›€์ด ๋ ๋งŒํ•œ ์†Œ์žฌ๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค. ์ œ๊ฐ€ ์ฐพ์•„๋ณด๋Š” ์ž…์žฅ์—์„œ๋„ ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ์ฝ˜ํ…์ธ ๊ฐ€ ๋งŽ์•˜๊ณ , ๋ ˆํผ๋Ÿฐ์Šค๊ฐ€ ์—‰์ผœ์žˆ๋‹ค๋Š” ๋Š๋‚Œ์„ ๋งŽ์ด ๋ฐ›์•˜๊ฑฐ๋“ ์š”. ๊ทธ๋Ÿฌ๋ฉด์„œ๋„ ํ•œํŽธ์œผ๋กœ๋Š” '๋‚ด๊ฐ€ ์ง€๊ธˆ ์ž˜๋ชป ์ƒ๊ฐํ•˜๊ณ  ์žˆ๋Š” ๊ฑด ์•„๋‹๊นŒ?'๋ผ๋Š” ์ƒ๊ฐ๋„ ๋“ค์—ˆ์–ด์š”. ๊ทธ๋ž˜์„œ ๋ˆ„๊ตฐ๊ฐ€๋Š” ์ž˜๋ชป๋œ ์˜ค๊ฐœ๋…์„ ๋งž๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜๋„ ์žˆ๊ฒ ๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“ค์–ด ๊ธ€์„ ์“ฐ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‘์„œ์—†์ด ๊ธ€์„ ์“ฐ๋‹ค ๋ณด๋‹ˆ, ์˜ค๋ฅ˜๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์–ด์š”. ๋ฐœ๊ฒฌํ•˜์‹ ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ์•Œ๋ ค์ฃผ์‹œ๋ฉด ํฐ ๋„์›€์ด ๋  ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

 

 

์—ฌ๋‹ด.

์ €๋Š” ์š”์ฆ˜ ์ „๋ฌธ์ ์ธ ๊ธ€์„ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”์ž๋Š” ์ƒ๊ฐ์„ ๊ฐ–๊ณ  ์žˆ์–ด์š”. (๊ทธ๋ž˜์„œ ๋ธ”๋กœ๊ทธ๋ฅผ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค) ์ง„์งœ ๊ณ ์ˆ˜๋“ค์€ ์—„์ฒญ ์–ด๋ ค์šด ๋‚ด์šฉ๋„ ์ง„์งœ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•˜์ž–์•„์š”. ์ €๋Š” ์•„์ง ์—„์ฒญ ์–ด๋ ค์šด ๋‚ด์šฉ์„ ์—„์ฒญ ์–ด๋ ต๊ฒŒ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ๋„ ๋ฏธ์ˆ™ํ•˜์ง€๋งŒ, ์ตœ๋Œ€ํ•œ ์ง๊ด€์ด๋‚˜ ์ดํ•ด๋ฅผ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ด€์ ์—์„œ ๊ธ€์„ ์ ์–ด๋ณด๋Š” ์—ฐ์Šต์„ ํ•˜๊ณ  ์žˆ์–ด์š”. ๋‹ค์Œ์—๋Š” ์กฐ๊ธˆ ๋” ์œ ์ตํ•œ ๊ธ€์„ ๊ฐ€์ง€๊ณ  ์™€๋ณผ๊ฒŒ์š”.

 

๋”๋ณด๊ธฐ

์ด ๊ธ€์„ ์ž‘์„ฑํ•˜๋˜ ์ค‘์— ๋“œ๋ž˜ํ”„ํŠธ๋ฅผ ํ•œ๋ฒˆ ๋‚ ๋ ธ์–ด์š”. ์ž„์‹œ์ €์žฅ์„ ํ•ด๊ฐ€๋ฉด์„œ ์“ฐ๊ณ  ์žˆ์—ˆ๋Š”๋ฐ, ์ž„์‹œ์ €์žฅํ•œ ๋“œ๋ž˜ํ”„ํŠธ๊ฐ€ ์ง€์›Œ์ง„ ์ฑ„๋กœ ์ž๋™์ €์žฅ์ด ๋ผ๋ฒ„๋ ค์„œ.... ๐Ÿ’จ ์†”์งํžˆ ๋งํ•˜๋ฉด ๋‹ค์‹œ ์“ฐ๊ธฐ ์ •๋ง ์‹ซ์—ˆ์–ด์š”. ํ•˜์ง€๋งŒ, ์ด ๊ธ€์ด ๋ˆ„๊ตฐ๊ฐ€์—๊ฒŒ๋Š” ๋„์›€์ด ๋  ์ˆ˜๋„ ์žˆ์ง€ ์•Š์„๊นŒ๋ผ๋Š” ์ƒ๊ฐ์ด ๋“ค์–ด์„œ ๊พธ์—ญ๊พธ์—ญ ์ฒ˜์Œ๋ถ€ํ„ฐ ๋‹ค์‹œ ์ผ์Šต๋‹ˆ๋‹ค. ์‹ฌ์ง€์–ด ๊ทธ๋ฆผ๋„ ๋‹ค ๋‹ค์‹œ ๊ทธ๋ ธ์–ด์š”...๐Ÿ˜ญ (์ €์žฅํ•  ํ•„์š” ์—†์„ ๊ฑฐ๋ผ ํ™•์‹ ํ–ˆ๋˜ ๊ณผ๊ฑฐ์˜ ๋‚˜)

 

์›๋ž˜ ๋ฒ„์ „์—์„œ๋Š” ์ข€ ๋” ๋งํˆฌ๋„ ์นœ์ ˆํ•˜๊ณ , ์นœ๊ทผํ–ˆ๋Š”๋ฐ, ๋‘ ๋ฒˆ์งธ ์“ฐ๋‹ค ๋ณด๋‹ˆ ์ข€ ๋”ฑ๋”ฑํ•ด์กŒ๋„ค์š”. ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธ€์“ฐ๊ธฐ ํ”Œ๋žซํผ์— ์กฐ๊ธˆ ํ™”๊ฐ€ ๋‚ฌ๋‚˜ ๋ด…๋‹ˆ๋‹ค. ๊ทธ๋ž˜๋„ ์กฐ๊ธˆ์€ ๋„์›€์ด ๋˜๋Š” ๊ธ€์ด์—ˆ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.

 

 

 

 

์ธ๋„ค์ผ์šฉ ์‚ฌ์ง„

๊ธ€ ์ฝ๋Š๋ผ ๋„ˆ๋ฌด ๊ณ ์ƒํ•˜์…จ์œผ๋‹ˆ,

๊ท€์—ฌ์šด ๊ฑฐ ๋ณด๊ณ  ๊ฐ€์„ธ์š”

 

 

 

๋ โ—ผ๏ธŽ

๋ฐ˜์‘ํ˜•